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Abstract
Shrew attacks or pulsing attacks are low-bandwidth
network-level/layer-3 denial-of-service attacks. They
target TCP connections by selectively inducing packet
loss to affect latency and throughput. We combine the
recently presented DNS CNAME-chaining attack [5] with
temporal lensing [24], a variant of pulsing attacks, to cre-
ate a new, harder to block attack. For an attack, thou-
sands of DNS resolvers have to be coordinated. We
devise an optimization problem to find the perfect at-
tack and solve it by using a genetic algorithm. The re-
sults show pulses created with our attack are 14 times
higher than the attacker’s average bandwidth. Finally,
we present countermeasures applicable to pulsing and
CNAME-chaining, which also apply to this attack.

1 Introduction

Network-layer or volume-based Denial-of-Service
(DoS) attacks are a common attack type in which the
attacker tries to overwhelm the network connection
of the victim, causing high delay, poor performance,
or even total unreachability of the victim. Often they
make use of reflectors and amplifiers [26], such as
DNS or NTP servers. This creates stronger attacks and
provides increased anonymity to the attacker. However,
it requires spoofing the source IP address, which might
be prohibited by the Internet Service Provider [22] or
out of the attacker’s control, e.g., when using a botnet.

The second type of volume-based DoS attacks are
pulsing ones, which have a much lower average band-
width [16, 17, 18, 19]. This makes them much harder to
detect and defend against. In pulsing attacks the traffic
consists of many short but high-bandwidth traffic spikes
or pulses. However, for TCP connections traversing the
same path as the attack traffic, this can be detrimental.
The pulses cause packet loss in the TCP connections,
making them adapt their congestion window size and re-

ducing their throughput. An attacker who is synchro-
nized with a TCP connection can even stall it completely.

Attackers benefit from combining pulsing attacks with
amplification to create stronger pulses. As shown by
Rasti et al. [24], using reflectors allows for a technique
called temporal lensing, which uses the difference in la-
tencies for different reflectors to create fewer but much
stronger pulses. They showed how recursive DNS re-
solvers are a good candidate for reflectors and performed
measurements with 1201 resolvers.

Recently, we published a new application-layer DNS
attack [5]. It uses CNAME resource records (RRs) to force
recursive resolvers into sending many packets to the vic-
tim. CNAME records work similar to pointers in program-
ming languages in that they allow for arbitrary redirects
and have to be resolved one-by-one to retrieve the de-
sired RRs. Filtering this attack is much harder because it
looks more like benign traffic and it can even be launched
from a botnet, resulting in more attack bandwidth and in-
creased anonymity for the attacker. CNAME-chaining al-
ready has periodicity in its traffic pattern, making it suit-
able for repeated pulsing attacks.

In this paper we draw on the two attacks described
above and explore how they can be combined. We de-
velop a methodology to describe a measure of success for
pulsing attacks. We measure the path latencies for 60570
open recursive resolvers, a much larger set compared to
Rasti et al. [24], and devise an optimization problem to
create an efficient and successful attack. The optimiza-
tion problem is of high-dimensionality, and we build an
evolutionary algorithm which allows us to solve it. With
that we show the effectiveness of our attack. Reoccur-
ring pulses, created with this attack, are 14 larger than
the attacker’s average bandwidth. Lastly, we will cover
countermeasures related to all three parts of the attack,
namely pulsing, temporal lensing, and CNAME-chaining.

The remainder of this paper is organized as follows.
We start by introducing the background information
for pulsing, temporal lensing, and CNAME-chaining



in Section 2. We continue with the attack setup and
threat model in Section 3. Section 4 describes our
model for optimal pulsing and explains how we use
evolutionary algorithms to solve the optimal pulsing
problem. The evaluation is contained in Section 5 and
followed by a discussion about the limitations of our
current implementation. Lastly, we provide an overview
over countermeasures applicable to pulsing, temporal
lensing, and CNAME-chaining in Section 7.

2 Related Work

This section describes some previous work on pulsing
Denial-of-Service attacks and CNAME-chaining attacks,
both of which are building blocks for our attack scheme.
We explain the basics of each of them, as far as it is rel-
evant for this paper.

2.1 Pulsing Denial-of-Service Attacks

Denial-of-Service (DoS) or Reduction-of-Quality at-
tacks on TCP connections can be performed with short
traffic pulses. Named as shrew attack, these pulsing
attacks were first presented in 2003 by Kuzmanovic
and Knightly [16, 17] and further analyzed by Luo and
Chang [18, 19].

The attack creates short traffic pulses, which fill the
buffer of a router and cause packet loss in concurrent
connections passing through this router. Packet loss
causes two problems for TCP connections. First, TCP
exhibits head-of-line blocking as in-order delivery of
data is guaranteed. This increases the end-to-end latency
because the receiver has to wait for a retransmission of
the lost packet. Even with a fast retransmission strat-
egy, it takes at least one round-trip until the retransmitted
packet is received. In the case of flows with few packets
in total, such as loading of small resources using HTTP,
and long round-trip-times (RTTs), this can be a consider-
able factor for the overall performance. Similarly, if mul-
tiple independent resources are multiplexed over a single
TCP connection, for example in HTTP/2, a lost packet
stalls the independent resources.

The second problem is a bandwidth reduction due to
reduced congestion windows. Common TCP algorithms
use packet loss as a congestion signal and are very sen-
sitive to packet loss events, especially on high-speed and
long distance links [2, 14]. The common TCP algorithms
include TCP Reno [1] and Cubic [25], as used in Linux,
and Compound TCP [28] used in Microsoft Windows.
Inducing packet loss via pulsing attacks, even if there is
no permanent link congestion, will lead TCP to reduce
the congestion window size and reduce the bandwidth.

Scheduling repeated pulsing attacks, before the conges-
tion window recovers, will lead to continuous reduction
until it reaches a low steady state.

The effectiveness depends on the time between packet
loss (the pulsing interval) and the amount of packet loss.
Shorter pulsing intervals leave less time for the conges-
tion window to recover. TCP algorithms can have differ-
ent responses depending on the amount of packet loss.
For small amounts the congestion window is only re-
duced, while for larger amounts the congestion window
is fully reset to the initial size.

2.1.1 Pulsing with DNS

Pulsing requires a high-bandwidth from the attacker, be-
cause the attacker’s and the victim’s bandwidth are di-
rectly correlated. To overcome this limitation, Rasti et
al. [24] presented in 2015 temporal lensing, which trades
off long low-bandwidth for a short high-bandwidth pulse.
The attacker will pick a reflector to use as a relay to send
a packet to the target. A reflector is any host, which can
be brought to send packets to a third-party. In the sim-
ple case these can be servers which respond to spoofed
UDP packets, like DNS or NTP [26, 29]. Each reflector
has a different path lengths, such that two packets sent at
the same time will arrive at different times at the target.
The attacker can measure this difference and adapt their
timing while sending. They send the packets at different
points in time, such that they arrive at the same time. The
attacker uses reflectors with a wide range of path laten-
cies to increase the lensing factor, which is the maximal
bandwidth at the target compared to the attacker’s one.

Rasti et al. used DNS resolvers as reflectors. They are
a good fit due to their abundance, providing a wide range
of different path latencies, and are easy to use as reflec-
tors. In their paper they cover single-pulse and multi-
pulse attacks. They observe how the retransmission be-
havior of DNS resolvers leads to multiple pulses.

2.1.2 DNS CNAME-Chaining

So far the average bandwidth at the victim mainly de-
pends on the attacker’s bandwidth, with temporal lens-
ing allowing for stronger but fewer pulses. We want to
extend pulsing with an amplification attack to allow an
attacker to create even stronger pulses. For this we will
leverage CNAME-chains, that provide high amplification
potential with a factor of 8.5 [5].

DNS allows arbitrary redirects during the resolution
process through the CNAME record type, that can even
point to other CNAME records. This allows for ampli-
fying the number of requests a resolver has to perform
and was used by Dagon et al. [10] and Pfeifer et al. [23]
to measure resolver behavior. Recently, we [5] showed
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Figure 1: Attacker A brings resolver R to send mul-
tiple queries to each ANS, causing some amplification.
The dashed arrows represent the CNAME pointers between
the domain, while the circled numbers ( 1 – 3 ) show the
CNAME-chain order.

how CNAMEs can be chained for application-level ampli-
fication attacks in DNS. In contrast to classical volume-
based DoS using DNS the attacker does not require the
ability to send spoofed packets. CNAME-chaining is part
of the DNS protocol specification and therefore hard to
prevent or block. They link two zones together, building
CNAME-chains changing the authoritative zone for each
redirect. Jumping between different zones prevents re-
solvers and name servers from optimizing the lookup
scheme and forces the resolvers to issue one request for
each element in the chain. The whole lookup process is
symbolized in Figure 1, where attacker A uses a CNAME-
chain to bring resolver R to send multiple queries to each
authoritative name server (ANS). If the chain jumps be-
tween two zones, this will create 17 lookups for both
zones combined. The 17 lookups hold true for a resolver
running a recent version of BIND, other DNS resolvers
might have different limits.

In this paper we explore how these two attacks can be
combined to increase the effect of pulsing attacks with-
out higher bandwidth requirements for the attacker. The
CNAME-chains generate a periodic request pattern at the
authoritative name servers, which we leverage to build
recurrent pulsing.

3 Threat Model and Attack Setup

We introduced the primitive components used for our at-
tack. We will now describe an attack scenario which will
be used for the rest of this paper. On the basis of this sce-
nario we explain our attacker and threat model as well as
countermeasures in Section 7.

Our attacker wants to attack a cloud hosted service
which uses many long-running TCP connections. The at-
tacker knows or can find out where the servers are physi-
cally located. Additionally, they can control a DNS zone
file on a server located “close” to the target servers and
a DNS zone file on an arbitrary second server. We will
refer to them as primary authoritative name server (pri-
mary ANS) and secondary ANS. The goal is to cause

enough packet loss to severely reduce the throughput of
and increase the latency for the target service.

The whole setup is shown in Figure 2. It shows the
placement of the primary ANS in relation to the target
service. The bottleneck connection will be the congested
link which causes the packet loss. As the traffic of the tar-
get service has to traverse this link, its TCP flows will be
affected. The placement of the secondary ANS is uncon-
strained. Millions of open resolvers are on the Internet
and can easily be found by an attacker.

The attacker has multiple options for finding the lo-
cation of a server. Often the information can be gained
through DNS, e.g., a CNAME to a domain associated with
a cloud provider. The IP address of the target service is
another good way to find the hosting provider.

For the second requirement, the primary ANS, the at-
tacker could rent a VM from the same hoster. In other
cases, buying DNS or web hosting from a provider using
the same data center is possible. The important part is
the “close” location to the target service, which for this
case means that the primary ANS shares part of the path
to the Internet with the target service. Sharing a part is
important, because this is where the packet loss can be
triggered to affect the target.

The secondary ANS can be located almost arbitrarily,
except being the same machine as the primary ANS. It
will receive considerable fewer queries than the primary
ANS as most of them will be cached by the resolver. The
ANSs will be configured according to the setup used in
our earlier paper [5] by creating two zones with CNAME

entries pointing to the zone of the other ANS. This en-
sures that the attack works on all ANSs by preventing
optimizations which would speed up the chain lookup
for the resolver.

Besides the ANS setup, a list of reflectors and accurate
timing between them and the ANSs is required. The re-
flectors will be open DNS resolvers or simply resolvers.
They process queries from any client on the Internet and
perform DNS resolution, which forces them to send mul-
tiple requests to each ANS. This results in a variable tim-
ing between the point a client sends the query and the
point when the ANS receives them.

Scanning the Internet on UDP port 53 reveals many
open resolvers and can be performed in under an
hour [11]. Lists of resolvers can be downloaded [8], if
scanning is not viable. Our attacker only needs the abil-
ity to send UDP packets. This is in contrast to volume-
based reflective distributed DoS attacks [26], which re-
quire spoofed source IP addresses for the attack traffic.
In our setup the attacker can operate from a single source
or even use botnets to increase anonymity and total band-
width.
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Figure 2: The figure shows how all parts are connected with each other. Important is the placement of the primary
ANS, such that it shares the bottleneck connection with the target service. The bottleneck connection will be the
congested link causing the packet loss during the pulsing. The placement of the secondary ANS is unconstrained.
Open resolvers can be found by scanning the Internet or downloading lists of resolver IP addresses. The icons by VRT
Systems are licensed under CC BY-SA 3.0 [9].

3.1 Accurate Timing

For achieving the temporal lensing effect, accurate tim-
ing information between all parties, i.e., the attacker, re-
solvers, and both ANSs is required. They are easy to
measure by sending DNS queries to the resolvers and ob-
serving the response times. We name the RTT between
attacker and resolver RT TA/R and analogously the RTT
between resolver and ANS as RT TR/NS.

Measuring RT TA/R is accomplished by requesting
a cached resource record and measuring the response
time. The time between resolver and ANS, denoted as
RT TR/NS, is measured by sending queries to non-cached
resource records, such that the resolver has to fetch the
records from the ANS. By subtracting RT TA/R from the
measured RTT we gain RT TR/NS. The important time is
the one between resolver and primary ANS, as these RRs
will not be cached and thus will cause traffic. All RRs of
the secondary ANS will be cached by the resolver after
the first lookup, thus they resolve instantaneously and do
not affect the timing calculations.

Halving the RTTs gives the delay from attacker to
ANS. This assumes a symmetric delay for the return
path, which might not always hold true, but is a good
enough approximation [24]. The attacker can now per-
form a pulse by picking an initial delay dR depending on
the resolvers, such that ∀R.dR +(RT TA/R +RT TR/NS)/2
is constant. Sending a packet to resolver R after dR will
result in pulse where all packets arrive at the same time.

4 Pulsing

This section is constructed as follows. We assume the
attacker has completed the attack setup which includes
measuring the round-trip-times (RTTs) as described in
the last section. We then define how an optimal recurrent
pulsing attack will look like and describe an optimiza-
tion problem to create them. Based on this optimiza-
tion problem of coordinating thousands of reflectors, we
develop an evolutionary algorithm which can solve this
high-dimensional problem efficiently.

4.1 Optimal Recurrent Pulsing for Chains

Section 3.1 describes how the timing for a single pulse
can be calculated. Chaining attacks requires a more com-
plex strategy. Lookup chains started at different resolvers
will get out of sync after a few chain elements, due to
varying RT TR/NS values. To create several pulses, one
can carefully align the chains such that the various re-
quest periods add up and exceed the victim’s resources.
This results in a trade-off between creating pulses (which
requires delaying requests) and the average attack band-
width (which suffers from delays).

We define the goal of recurrent pulsing as exceeding
the target’s estimated maximum resources as long as pos-
sible. The intuition behind this goal is that at all times
when the attack traffic exceeds the available resources,
packet loss will occur and harm the victim. We model
this in an optimization strategy that—given a set of ini-
tial per-resolver delays to start the first chain—optimizes
the overall time the target’s bandwidth is over a certain



threshold. More formally, we define an optimization
function f

fT (D) =
∫

sT (t,D)dt (1)

with

sT (t,D) =

{
1 if b(t,D)≥ T

0 else
,

where b(t,D) is the attack bandwidth reaching the victim
at time t and T is the target’s available bandwidth. For
each resolver r ∈R, the attacker can choose an arbitrary
delay dR with D = {dR|R∈R} to maximize f (D). They
can then estimate the attack bandwidth b(t,D) by com-
puting how many queries would arrive at the victim—
given the per-resolver RTTs RT TA/R and RT TR/NS.

BIND is one of the most commonly deployed DNS
resolvers [5, 15], therefore to simplify matters we as-
sume all resolvers behave like BIND. It follows CNAME-
chains for 17 elements in total of which nine will be
sent towards the victim. We refer to this as the chain
length limit. Resource records (RRs) can be marked as
non-cachable, by settings the time-to-live (TTL) value to
zero. BIND caches such RRs until the internal timestamp
counter ticks to the next seconds. After the record has ex-
pired, fetching it again takes RT TR/NS, so chain restarts
can happen every 1s+RT TR/NS to ensure that they are
never cached by the resolver.

Other resolvers have different chain lengths limit or
truly never cache a RR. In practice, an attacker could
perfectly fingerprint each resolver software and adapt
the maximum chain length and request frequency per re-
solver. There are resolvers with lower chain length lim-
its, which would result in an overall lower amplification,
while the ones with higher limits increase it. Resolvers,
which never cache a RR, are beneficial, because they can
be scheduled more freely, as chain restarts can happen
every RT TR/NS for them.

4.2 Evolutionary Model
While the aforementioned method is optimal, solving
the optimization is impractical. Choosing optimal val-
ues for dR quickly becomes intractable, as the number of
resolvers increases. There is one delay value to choose
per resolver, resulting in an |R|-dimensional optimiza-
tion problem.

To tackle this complexity, we decided to explore evo-
lutionary algorithms for finding a good (yet not opti-
mal) solution to this optimization problem. Evolution-
ary algorithms borrow ideas from evolution to build al-
gorithms without much expert knowledge. Genetic al-
gorithms [13], a form of evolutionary algorithms, have
demonstrated quick convergence to a good solution for

many optimization problems [20]. Technically, genetic
algorithms choose an input population and then use mu-
tation, crossover, and re-selection to optimize towards a
given fitness (i.e., optimization) function. While muta-
tion functions take a genome representation and mutate
its values, crossover takes two parent genomes and com-
bines them to create a new one.

4.2.1 Description

Before describing our implementation, please note that it
is common practice to fine-tune genetic algorithm before
applying them on a large data set. Different population
sizes, selection strategies, or mutation probabilities can
have large impacts on quality of the results and the speed
in which the algorithm converges. In the following, we
thus present configuration parameters that we obtained
after a grid search to optimize for a low convergence
time.

Figure 3 provides an overview of our genetic algo-
rithm. An individual is the sequence of all resolvers’
delay values dR and is represented as an array of length
|R|. We represent the delay values as integer multiples
of 1 ms. Each delay is in the range of 0 ms to 1500 ms.
Larger values have little influence on the performance
of the algorithm. This is caused by the way the chain
restarts are handled, because they occur in regular inter-
vals of 1s+RT TR/NS. Offsets which differ by a multiple
of 1s+RT TR/NS only differ at the initial start but result
in the same alignment. 94.2 % of all measured RT TR/NS
values are below 500 ms. For these the maximal delay
span of 1500 ms is enough to represent all possible align-
ments.

The population is the collection of all individuals
which exist at any point in time. The initial population
is seeded by randomly choosing each delay value from a
uniform distribution (0 to 1500). Each individual can be
mutated or mixed with other individuals in the popula-
tion during crossover. A larger population provides more
diversity in the genomes and allows more combination
in crossover. Our population has a constant size of 1250
individuals.

In each iteration of the genetic algorithm, 50 % of the
population is selected for mating, creating 25 % (312)
new individuals overall. The selection is based on a max-
imizing selector, selecting the fittest individuals. After
applying crossover and mutation, some old individuals
are replaced with new ones. All individuals in the popu-
lation are equally likely to be replaced with new individ-
uals.

Figure 3 gives an overview of our crossover and muta-
tion strategies. We implemented a delta-mutation and a
reset-mutation. The delta-mutation occurs with a 30 %
chance and alters delays by a random value chosen
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Figure 3: Graphical representation of implemented
crossover and mutation strategies. The delta- and reset-
mutation have a 4 % chance of mutation per entry, in-
stead of the displayed 30 %.

from a normal distribution with N (0, 302). The reset-
mutation occurs with a 45 % chance and replaces delays
with a new value chosen uniformly from the range of 0 to
1500. Each individual delay is mutated with a 4 % prob-
ability. For the remaining 25 % of cases no mutation is
performed.

Crossover is implemented using one-point-crossover
and uniform crossover. For one-point-crossover, per-
formed at 15 % chance, a crossover point p in the range
p ∈ [0; |R|] (the length of the genome) is chosen uni-
formly. The new genome will consist of the first p delays
of the first parent and the remaining R− p delays from
the second parent. The uniform crossover is chosen 85 %
of all times and selects each delay with equal probability
from either parent.

4.2.2 Optimization Goal

We adapt the optimization function defined in Equa-
tion (1) to make it suitable for a fitness function in ge-
netic algorithms. First, we use a discrete time model,
thus we measure the target’s bandwidth in intervals of
16 ms each. Aggregating the bandwidth in intervals is
a performance optimization. Second, the fitness func-
tion should incrementally improve for bandwidth values
which are close to the chosen threshold (i.e., the target’s
available bandwidth) to favor individuals that work to-
wards the final goal. We define the fitness function as

fT (D) =
tend

∑
t=0

sT (t,D) (2)

with

sT (t,D) = min(
b(t,D)p

T p ,1),

where b(t,D) is again the target’s bandwidth, but per
16 ms interval, and T is the target’s available bandwidth.

D is the genome which is optimized by the genetic al-
gorithm to maximize fT (D). This fitness function offers
more incentives the closer the bandwidth is to the thresh-
old. We set tend to 1875, which corresponds to a 30 s
interval. The power p allows specifying how much the
genetic algorithm should favor smaller spikes (the lower
p, the more it favors also smaller spikes).

We consider two different chain restart strategies,
which we term greedy and self-pulsing. The greedy strat-
egy re-starts a chain as soon as possible, which is the
aforementioned 1s + RT TR/NS delay between restarts.
The self-pulsing strategy aligns all chain restarts of the
same resolver with itself, such that all packets from the
same resolver will arrive at the target at the same time.
Restarts happen every d(1s + RT TR/NS)/RT TR/NSe ∗
RT TR/NS, which is the smallest multiple of RT TR/NS
larger or equal to 1s+RT TR/NS. The idea behind this
strategy is that due to the self-pulsing of the chain, the
alignment between resolvers becomes easier.

5 Evaluation

To evaluate how effective such pulsing might become,
we created the following measurement setup. We mea-
sured the RTT between resolvers and two authoritative
name servers (ANSs) as described in the beginning of
Section 4. Our primary ANS was located in Germany,
while the less important secondary ANS was located on
the US east coast. We primed the resolvers’ caches to en-
sure reliable RTT measurements to the resolvers and set
the recursion desired bit to false. The recursion desired
bit instructs a resolver to only return an answer if one is
available in the cache, and the resolver should not fetch
it from the ANS. Randomizing the queries to measure
the RTT between resolver and ANS ensures resolvers
need to forward the query to the ANS. The measurements
were repeated five times to gain reliable measurements
and to calculate the standard deviation.

For more stable timing measurements, we only consid-
ered resolvers that are not forwarders. Forwarders have
an additional layer of DNS resolvers to the ANS, making
the measured RTTs unreliable. In order to gather such a
list, we conducted full IPv4 scans, fingerprinting each
resolver during the scan and observing which resolvers
contact the ANS. This way we can differentiate between
a resolver directly contacting our ANS or via some other
resolver. We followed the scanning best practices as out-
lined by Durumeric et al. [11]. Not all resolvers provided
usable data, e.g., because the resolver was not reachable
during the whole measurement period. Other resolvers
disabled queries with recursion-desired bit set to false
and thus our methodology could not determine the RTT
from us to the resolver. Excluding those resolvers, over-
all we gathered reliable RTT data for 60570 resolvers.



We can evaluate this approach by checking how well
the evolutionary algorithm performs while finding a so-
lution. Completing the genetic algorithm is expensive,
due to the high number of resolvers. The genetic model
parallelizes well and can use all available CPUs. This al-
lows calculating the model using 24 cores of a Xeon E5-
2667 server in two hours. Our genetic algorithm stops
after 5000 iterations, which we found to be sufficient to
converge on a good solution.

After the genetic algorithm terminated, we relate the
performance of its output (i.e., the best individual) with
the naive attack in which all chains starts immediately
(all dR are 0). Figure 4 compares the packet rates the
attacker sends (upper graphs) and the victim receives
(lower graphs) for the naive approach (left), the genetic
algorithm with p = 2 (middle) and p = 8 (right).

Estimating absolute bandwidth numbers, such as
kbit/s, is very hard, as it depends on the multiple factors
we do not control or left undefined in our setup. Dif-
ferent factors are the length of the domain name, EDNS
support and options used by the resolvers, and the chosen
transport protocol (UDP or TCP). We therefore specify
the bandwidth in queries per second (q/s). A short DNS
query (no EDNS, using UDP) requires roughly 100 B to
transmit including the inter-packet gap of Ethernet.

While the naive approach also shows some pulsing be-
havior (due to resolvers sharing similar RT TR/NS), (i) the
pulses decay after a few seconds, and (ii) the naive so-
lution requires the attacker to start all chains virtually
simultaneously—which is unrealistic in practice. In con-
trast, the solutions found by the genetic algorithm are
practical, i.e., require a reasonably constant sending rate
from the attacker. This is a positive side effect of this
approach, even though the fitness function actually does
not favor a uniform attacker bandwidth. Furthermore,
the genetic algorithm creates slightly larger and signifi-
cantly more steady spikes than the naive approach. This
effectively means that an attacker can create reoccurring
pulses that are 14 times higher than its average sending
rate.

The original temporal lensing experiment and results
are quite different. We showed that temporal lensing is
viable with a high attacker bandwidth and very low per-
resolver bandwidths. Rasti et al. [24] only achieved high
(> 10) amplification rates if both (i) the attacker’s maxi-
mum bandwidth is severely restricted (< 10000q/s) and
(ii) the maximum bandwidth to any resolver is at least
100 times larger compared to our setup. Given an identi-
cal per-resolver bandwidth of 1 q/s in both experiments,
we achieve a factor of 14 while Rasti et al. report no
amplification. As such our experiment improves results
given many more resolvers and lower per-resolver band-
widths.

Finally, we compared the performance of the greedy

restart compared to self-pulsing. Self-pulsing has longer
pauses between restarts, reducing the overall average
bandwidth by 5.4 %. We noticed little influence on the
genetic algorithm between those two strategies. The
naive approach profited slightly from this change, as the
naturally occurring pulses are amplified, due to the con-
sistent alignment between chains of different resolvers.
In the greedy approach, the alignment between chains of
different resolvers becomes distorted over time and flat-
tens the occurring pulses.

6 Discussion

We discuss the limitations and how our model could be
extended to improve the shortcomings. Our first simpli-
fication concerns the time model we use. We assumed all
measured times are constant and based on that decision
chose a discrete time model. Network packets experience
jitter resulting in varying RTT values. This can be mod-
eled by using a probabilistic model. Instead of assigning
a single time to each packet, the packet is represented as
a probability distribution of when it arrives.

A second limitation regards redundancy in DNS. DNS
requires at least two authoritative name servers (ANSs)
configured for a zone and resolvers are free to choose
between all available ANSs. If the primary ANS is under
full control, both configured ANSs could use the same IP,
thus the same machine, and reduce this uncertainty.

If the primary ANS is a hosted service, the hoster will
have multiple physical machines configured. Measure-
ments of the server selection algorithm [21, 31] have
shown that most resolvers prefer the most responsive
(i.e., lowest RTT) ANS but most will use even the slower
ANSs for some fraction of all queries. Resolvers use it
to re-check the RTT of all available ANSs. This makes it
impossible to predict exactly when a packet arrives at the
target ANS, as the resolver might use a different ANS.

A general solution to combat the uncertainty of timing
is to have re-synchronization points. At these points, the
attacker stops sending queries to the resolvers and waits.
This ensures that in-flight queries of resolvers will be re-
ceived and cache entries can time out. After some time,
the attacker can restart the attack, which will be identical
to the initial attack. Additionally, this allows an attacker
to re-use the computed delay values, as the timings sim-
ply repeat.

Lastly, our genetic algorithm implementation so far
has only optimized the initial delays. We have discussed
greedy and self-pulsing strategies to restart the chains.
Ideally, the timing between restarts of the chain could
be optimized as well. Other values might yield better
results, especially if the wait time is calculated for ev-
ery restart. However, optimizing the restart times would



Figure 4: Bandwidth comparison of the genetic algorithm’s solutions compared to a naive one, which starts all chains
as soon as possible. The upper graphs are the outgoing bandwidth of the attacker, while the lower graphs are the
incoming bandwidth of the target. The time values between attacker and target graphs are independent and start at
zero on the first packet sent or received.

multiply the dimensions in our search space and would
require more advanced strategies to scale.

7 Countermeasures

Our attack consists of the three parts (i) pulsing (ii) tem-
poral lensing and (iii) CNAME-chains. There are different
countermeasures applicable for each of the parts.

7.1 Pulsing and Packet Loss
Common TCP variants, like TCP Reno [1] and Cu-
bic [25], use packet loss as the main congestion sig-
nal. Previous work [12, 16, 30] proposed randomizing
the retransmission timeout (RTO) and extending buffer
sizes [27].

Pulsing has the most detrimental effect, if the attacker
is synchronized with the victim. Causing packet loss
on every retransmission effectively stalls the connection.
Randomizing the RTO prohibits the attacker from being
synchronized, thus reducing the effects.

Larger buffers will cause less packet loss, all else be-
ing equal. Extending buffers requires hardware changes
to the network routers which makes it costly. The addi-
tional buffer space might be used by the existing flows,
thus negating the effect. It can even increase the RTT for
flows, thus having a negative effect under normal opera-
tions.

There are TCP algorithms, which use other feedback
mechanisms as their congestion signal; an older variant

of it being TCP Vegas [4]. However, TCP Vegas is be-
ing suppressed by algorithms with loss-based congestion
control. Recently TCP BBR [6, 7], short for bottleneck
bandwidth and RTT, was presented, which uses RTT in-
formation as congestion signal. TCP BBR ignores packet
loss up to a threshold, thus being more resilient to slight
packet loss.

The second problem of TCP is the head-of-line block-
ing it creates after packet loss. This does not necessar-
ily affect the throughput by much, but the end-to-end
latency. Where applicable, for example with HTTP re-
quests, connections with true multiplexing help. One
candidate for this is QUIC [3]. It can use UDP and multi-
plexes requests and responses through the UDP connec-
tion. Packet loss here will only affect the data where a
packet was lost.

7.2 Temporal Lensing

Temporal lensing requires precise timing information be-
tween all involved hosts. Any disturbance, such as net-
work jitter, will make the attack less effective. Jitter
could be introduced by the network routers. Care needs
to be taken, that packets of the same flow do not over-
take each other, as such, having a constant jitter per flow
5-tuple would work [24].

Another approach would be to introduce the jitter on
the DNS servers. This would not be a generic solution,
as other kinds of reflectors can be used, but it would not
have the problem of packets overtaking each other.



The problem with artificial jitter is, that it unnecessar-
ily slows down all applications on the Internet. It forces
higher memory and CPU consumption as packets have to
be stored and re-scheduled for later processing.

7.3 DNS and CNAME-Chains

Countermeasures against CNAME-chains as presented
in [5] also apply here. These can be summarized into
preventative measures and mitigation ones. Authoritative
name servers could prevent loading zones with too long
chains. Since this is not forbidden by the DNS specifi-
cation, this is more a solution for managed DNS hosting
providers.

Resolvers should not follow CNAME-chains too long.
This does not prevent the amplification, but at least re-
duces its impact. Benign chains are only up to nine el-
ements, which is the shortest supported length of com-
mon resolvers [5, 23]. In contrast, some resolvers sup-
port lengths of up to 33 elements. These resolvers pro-
vide a huge amplification potential which can be re-
duced without impacting deployed DNS setups. Re-
solvers might also consider minimal Time-to-Live (TTL)
for DNS records, such that caching can take effect for re-
ducing the number of queries. However, there are legit-
imate reasons to use low TTL values, such as load bal-
ancing, so this is also not a general purpose solution.

8 Conclusions

Recurrent pulsing provides a new way of performing dis-
tributed denial-of-service attacks against TCP connec-
tions. Leveraging a DNS application-layer amplification
attack allows for traffic pulses 14 times higher than the
average attacker bandwidth, while creating thousands of
low bandwidth and hard to block flows.

We developed a genetic algorithm to solve the chal-
lenge of coordinating an attack between tens of thou-
sands of reflectors, while still being efficiently com-
putable. Our implementation shows the feasibility of
launching this attack and the high amplification ratio
achievable.

We present a wide range of potential countermeasures
ranging from changes to networking equipment, like
larger buffer sizes, over protocol design, such as different
TCP algorithms, to DNS specific countermeasures.

In the future, we want to extend our implementation
by building a more realistic network model, which can
factor in jitter. By giving the attacker more control over
when chain restarts happen, we likely can improve the
pulsing factor.
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