
Padding Ain’t Enough: Assessing the Privacy Guarantees of Encrypted DNS

Jonas Bushart
CISPA Helmholtz Center for Information Security

Christian Rossow
CISPA Helmholtz Center for Information Security

Abstract
DNS over TLS (DoT) and DNS over HTTPS (DoH) encrypt
DNS to guard user privacy by hiding DNS resolutions from
passive adversaries. Yet, past attacks have shown that en-
crypted DNS is still sensitive to traffic analysis. As a conse-
quence, RFC 8467 proposes to pad messages prior to encryp-
tion, which heavily reduces the characteristics of encrypted
traffic. In this paper, we show that padding alone is insuffi-
cient to counter DNS traffic analysis. We propose a novel
traffic analysis method that combines size and timing infor-
mation to infer the websites a user visits purely based on
encrypted and padded DNS traces. To this end, we model
DNS Sequences that capture the complexity of websites that
usually trigger dozens of DNS resolutions instead of just a
single DNS transaction. A closed world evaluation based
on the Tranco top-10k websites reveals that attackers can
deanonymize test traces for 86.1 % of all websites, and even
correctly label all traces for 65.9 % of the websites. Our find-
ings undermine the privacy goals of state-of-the-art message
padding strategies in DoT/DoH. We conclude by showing
that successful mitigations to such attacks have to remove the
entropy of inter-arrival timings between query responses.

1 Introduction and Background

DNS is one of the most fundamental protocols on the Internet
because it is the starting point of nearly all Internet traffic.
It translates memorable names into cryptic IP addresses.
One critical path for privacy is between the client and the
resolver where several entities, such as Wi-Fi access points
or Internet Service Providers (ISPs) can eavesdrop. They
can use this information for advertisement or to create
browsing profiles of the victims. Upon visiting a website
by the user, the client sends one or multiple DNS queries to
the resolver, which can either answer them from the cache or
they perform the iterative lookup to query the Authoritative
Name Server (AuthNS). This means that DNS leaks almost
all user behavior to any eavesdropper.

Users are understandably worried about privacy, yet for
years DNS did not have any means to protect the integrity
and confidentiality of DNS messages. Partial solutions like
DNSSEC [1, 7] exist, but do not provide confidentiality. DNS
over TLS (DoT) [14] and DNS over HTTPS (DoH) [12]
close the gap and finally provide confidential DNS and are
supported in resolvers [6], browsers [2, 22, 29] and operating
systems [17, 18].

Yet, similar to other privacy-preserving communication
systems that leverage encryption (e.g., HTTPS [25, 33] or
Tor [23, 28, 31]), DoT and DoH are susceptible to traffic
analysis. Gillmor’s empirical measurements [10] show that
passive adversaries can leverage the mere size of a single
encrypted DNS transaction to narrow down the queried
domain. RFC 8467 [21] then follows Gillmor’s suggestions to
pad DNS queries and responses to multiples of 128 B / 468 B.

In this paper, we study the privacy guarantees of this
widely-deployed DoT/DoH padding strategy. We assume a
passive adversary (e.g., ISP) who aims to deanonymize the
DNS resolutions of a Web client. Modern Web services are
intertwined, such that visiting a website, creates many DNS
queries. While this padding strategy destroys the size entropy
of messages, we assess to what extent DNS resolution
sequences (e.g., due to third-party content) allow adversaries
to reveal the Web target. Such sequences utilize DNS message
sizes and timing information between DNS transactions.

We then leverage a k-Nearest Neighbors classifier to
search for the most similar DNS transaction sequences in a
previously-trained model. Our closed world evaluation shows
that an attacker can deanonymize 86.1 % of all test traces and
we show how DNS provides a better basis for performing
subpage-agnostic domain classification. These findings
undermine the privacy goals of state-of-the-art message
padding strategies in DoT/DoH, which is highly critical.

Two previous papers [13, 27] also address DoT/DoH. [13]
addresses DoT by using statistical features of sizes and
timing. In their most similar setting, they report 83 % correct
classifications for a dataset of only 98 websites. [27] attacks
DoH without utilizing timing, which we found to be very



important. For a comparable dataset (1500 domains) they
report 94.0 % precision, but they also report that DoH is
easier to classify. Compared to both papers we use the
largest dataset (10k domains) and address subpage-agnostic
classification and evaluate countermeasures.
Summarizing, we provide the following contributions:

1. We illustrate a traffic analysis attack that leverages DNS
transaction sequences to reveal the website a client visits.

2. We provide an extensive analysis of the privacy guaran-
tees offered by DNS message padding (RFC 8467 [21])
against our attack in a Web browsing context. We
demonstrate severe privacy losses even against passive
adversaries that sniff on encrypted and padded DNS traf-
fic and extend the analysis beyond just the index page.

3. We are the first to evaluate alternative padding strategies
and constant-rate communication systems against our
proposed attack. We reveal that even perfect padding
cannot mitigate traffic analysis, and show that any
promising countermeasure needs to obfuscate timing.

2 Traffic Analysis and DNS Padding

We now present how an adversary can use traffic analysis
to infer the browsing target purely based on encrypted DNS
traffic. Encrypted DNS only leaves three characteristics,
which can be used to infer the communication content,
namely (i) counts, such as packets, (ii) sizes, such as overall
transmitted bytes, and (iii) time. These three dimensions
provide valuable hints about the communication content.
Two standards describe how to add padding to reduce size
information: RFC 7830 [20] describes how to add padding
to DNS messages and RFC 8467 [21] recommends a padding
scheme of padding all queries to a multiple of 128 B, while
all responses are padded to a multiple of 468 B.

Encrypted DNS only protects against eavesdroppers
between client and resolver, but assumes the resolver is
trusted. Upstream communication of the resolver towards
the AuthNSs is not covered in this threat model. The resolver
will see all communication in plaintext and has to be trusted
to uphold privacy. We follow this threat model and assume
a passive attacker which can observe the communication
between client and resolver, yet not delay, alter, or inject
data into the traffic. The attacker is allowed to initiate their
own network connections from the same network-topological
location as the victim.

2.1 DNS Sequences
The padding recommendations are based on single
query/response pairs. We show that attackers can leverage
a sequence of DNS query/response pairs, to increase the
uniqueness compared to individual DNS transactions. Web
browsing causes the sequences of DNS queries for many
reasons, such as redirects, loading of third-party resources,

or resources from subdomains. As we will show, these
sequences characterize a user’s website visit quite well.

Consider a visit to “wikiquote.org” which triggers four
DNS requests/responses upon visit. It fetches the IP address
for the domain, then after 287 ms for the “www” subdomain,
and after another 211 ms for both the “meta” and “upload”
subdomains simultaneously. The resulting DNS Sequence
(which ignores requests) looks like Msg(1), Gap(8),
Msg(1), Gap(7), Msg(1), Msg(1). The DNS Sequence
encodes the four DNS responses (each 468 B long, i.e., one
padding block). If there is a time gap between two responses,
we note this gap and its magnitude using a millisecond log
scale (e.g., blog2(287)c= 8). This make it less susceptible
to timing variations, e.g., due to network jitter. We remove
all time gaps with a numerical value ≤0 (i.e., those shorter
than 1 ms), such as between the last two Msgs.

The DNS Sequence only includes DNS responses, since
we found the DNS queries to have almost no entropy and
their timing is highly correlated with the replies. We chose
to represent message sizes and timestamps abstractly as this
provides higher flexibility and generalizes over different
implementations and events outside of our control (e.g.,
network performance, jitter). Overall, this simplifies our
design while keeping most features.

DNS Sequence Extraction: We derive the DNS Se-
quences from encrypted and padded traffic. We identify a
DNS carrying connection using ports (853 for DoT), IP ad-
dresses (e.g., 9.9.9.9), the TLS handshake [15,16], or DNS-
like characteristics (like packet sizes). Then we reassemble
these TCP streams and extract “application data” TLS records.
After some data cleanup, like merging consecutive records
and ignoring overhead such as certificates, we only keep the
message sizes and inter-arrival times of the DNS messages.

2.2 DNS Sequence Classifier

Our classifier uses k-Nearest Neighbors (k-NN) to assign
labels to DNS Sequences based on the labels of the nearest
neighbors, i.e., the DNS Sequences most like the unlabeled
one. This assumes that similar DNS Sequences belong to the
same website. The k parameter specifies how many neighbors
should be searched and the plurality of the k found labels
determines the output classification.

We base the distance function upon the Damerau-
Levenshtein/edit distance [5, 19]. It counts the edit operations
required to turn one sequence into another using the four
operations insertion, deletion, substitution, and transposition.
We assign each operation a different cost based on the impor-
tance of each operation. For example changes to the volatile
timing information have a lower cost than to the rather stable
size information. We optimize these constants using a hyper-
parameter search over a subset of our closed world dataset.



3 Evaluation

We will now evaluate the efficacy of our proposed method-
ology to classify DNS Sequences that we obtain from traffic
captures. We shortly describe our dataset generation setup
and then introduce two evaluation scenarios. The closed
world scenario shows the baseline classification performance,
while the subpage-agnostic domain classification extends the
classification beyond the index page.

3.1 Measurement Setup
We create our dataset by visiting the top websites in the
Tranco list [30] and recording the DNS traffic. We use a
server with a 10 GB/s network interface running Debian 9.11.
For the closed world scenario we also collect data using
a Raspberry Pi 3 running Raspbian 10. The low power Pi
allows us to measure the effect of hardware performance on
dataset collection and classifier.

For each website we spawn a Docker container running
Firefox 72 and Unbound 1.9.4 as the DNS stub resolver.
We configure Unbound to forward all DNS queries using
DoT to Cloudflare’s resolvers at 1.0.0.1 and 1.1.1.1.
Unbound’s DNS cache is preloaded with the NS entries for
all TLDs since we assume a user will have these records
cached due to past resolutions. We control Firefox using
Selenium. Measurements are repeated up to two times if we
detect errors, such as missing DNS traffic or HTTP errors.
Lastly, we convert the network traffic into a DNS Sequence
as described in Section 2.1 and label it based on the website.
We group identical websites under a single label, such as
websites using different TLDs for their localized versions.

3.2 Evaluation Results
We evaluate our classifier in two settings. First, the closed
world, which highlights the best case for an attacker, and
provides a baseline for the performance and second, we
perform subpage-agnostic domain classification, where we
classify more than just the index page.

3.2.1 Closed World Scenario

The closed world scenario is the easiest for the attacker, since
all websites a client can visit are known in advance. The
attacker only needs to decide which known website is visited.

Our dataset consists of the top 10000 websites from the
Tranco list [24, 30] (2019-08-27) for which we collect ten
samples each. For 9235 websites we could collect this data,
the others repeatedly caused errors, and we could not collect
ten DNS Sequences. A seconds set of DNS Sequences are col-
lected on the Raspberry Pi, for which we collect four traces per
website. Data for 7699 websites was collected successfully.

This fully labeled dataset allows us to use cross-validation
to measure our classifier. We use 10-fold cross-validation

Table 1: Percentage of correctly classified DNS Sequences
in the closed world scenario with different classifiers and
datasets.

Classifier Server Raspberry Pi
k-NN (k=1) 86.1 % 80.9 %
k-NN (k=3) 85.6 % 79.0 %
NN 81.4 % 63.5 %

Table 2: Per website results for fixed k = 1 in the closed
world scenario. The table show the percentage of websites
we can re-identify in how many of the 10 data points/traces.
n/10 traces 1⁄10 2/10 3/10 4/10 5/10 6/10 7/10 8/10 9/10 10/10

Precision 92.2 91.8 91.3 90.8 89.9 88.5 86.9 84.4 79.6 65.9

between all the DNS Sequences, since we have exactly ten
traces per website and measure the percentage of correctly
classified DNS Sequences and show the results in Table 1. Our
k-NN classifier achieves up to 86.1 % on the server dataset
and 80.9 % for the Raspberry Pi dataset, both with k = 1.
We notice that higher k’s slightly reduce the performance
of the classifier, but not significantly, so even with k=9 the
performance only falls to 82.9 % for the server dataset.

The per-website results in Table 2 show how well we can
classify websites instead of DNS Sequences. We achieve a
perfect classification (i.e., 10/10) for about two thirds of all
websites. If we relax the requirements to 90 % correct clas-
sification per website, we can classify about 80 % correctly—
purely based on encrypted and padded DNS traffic.

We build a second type of classifier using Neural Net-
works (NNs), also shown in Table 1. It performs in the same
ballpark for the server dataset (81.4 %), but falls to only
63.5 % for the Raspberry Pi data. Since the results are worse
than the k-NN classifier, we do not consider it further.

3.2.2 Subpage-Agnostic Domain Classification

One challenging aspect of Website Fingerprinting (WF) is
subpage-agnostic domain classification, which is also a more
realistic scenario. Instead of performing classification only in
the index page, the attacker is faced with an arbitrary subpage
of the target domain. The challenge in this setup is the high
variability of the subpages, for example due to different
embedded images or different amounts of texts, and the much
larger space, as usually a domain has many subpages.

Our encrypted DNS-based classifier has a distinct advan-
tage here, as DNS requests are more stable than HTTP(S)-
based WF. Intuitively, DNS requests mainly depend on
third-party domains (e.g, for JS libraries or fonts). These are
commonly defined in templates and thus are identical for
many subpages. HTTP(S) traffic is more noisy, as the amount
and concrete images often changes from subpage to subpage.

We compare our method to Panchenko et al. [23,
Fig. 11 (b)] by calculating our own subpage confusion
matrix. The test consists of a closed world evaluation with



Figure 1: Subpage confusion matrix between different
domains and their 51 distinct subpages.

20 domains and 51 subpages each. For the same set of 20
domains as Panchenko et al. we pick 51 random URIs from
the Common Crawl [4] dataset from October 2019. Only
domains which resolve to a 200 status code are eligible.

Compared to Panchenko et al. [23, Fig. 11 (b)] we have
a much lower classification error in Fig. 1. Out of the total of
918 subpages only 43 (4.7 %) are wrongly classified, whereas
Panchenko et al. wrongly classify 175 (19.1 %) subpages.
Overall, our methodology performs better on 15 of the 18
domains. The most challenging domains are RAKUTEN and
REDDIT in which our classifier performs worse. One reason
why we can perform better is that the variance of DNS traffic
is lower than for HTTP(S) traffic.

4 Countermeasures

We showed that attacks based solely on encrypted DNS
traffic are feasible and can be successful. We now analyze
in which directions countermeasures need to be developed
by understanding the impact of the two major feature types
(size and timing) of our classifier. Based on these insights,
we then describe potential mitigations.

4.1 Evaluating Perfect Mitigations
Our classifier uses two feature types: packet sizes and timing
information. To build a better countermeasure, we first
need to understand which feature contributes more entropy,
because mitigating that will have the largest effect. To this
end, we perform a thought experiment in which we assume
perfect mitigations, i.e., a perfect padding scheme and a
perfect timing defense. We simulate these by removing the
Msg elements, for perfect padding, or the Gap elements from
the DNS Sequences.

Table 3: Comparison between our classifier, a simulated per-
fect padding scheme, and a simulated perfect timing defense.

k=1 k=3 k=5 k=7 k=9
Baseline 86.1% 85.6% 84.9% 83.9% 82.9%
Perfect Padding 84.5% 84.2% 83.9% 83.2% 82.4%
Perfect Timing 4.2% 4.0% 4.0% 3.9% 3.8%

We re-run the closed world classification with these mod-
ifications and compare the results in Table 3. We see only a
minuscule difference for a perfect padding defense, however,
we see a large drop in performance for the timing defense.
This indicates that the existing padding mechanism is already
close to optimal. In contrast, a perfect timing-based defense
destroys the classification results. The inter-arrival timings of
the DNS responses in the sequences carry significant entropy
that we use to classify perfectly-padded traffic.

From these observations we can derive important novel in-
sights. First, the currently proposed padding strategy [10, 21]
is indeed a good compromise between overhead and the
maximum privacy guarantees that an optimal padding could
guarantee. Yet, second, even an optimal padding strategy
does not decrease the trace’s entropy and does not suffice to
preserve the user’s privacy. Third, countermeasures should
also take into account timing information, as timing has
proven to contribute significant entropy in DNS Sequences.

4.2 Evaluating Practical Mitigations

Based on these observations, we now implement two practical
mitigations and measure their efficacy and efficiency.

Constant-Rate (CR) schemes [8] send a packet on a fixed
schedule every x ms. The packet is filled with payload, if some
is waiting, otherwise with padding data. CR entirely removes
timing information as everything is constant. However, CR
has a significant bandwidth and latency overhead, since pack-
ets must be sent, even if no payload is waiting, and packets
have to wait until the next scheduled transmission time thus
increasing latency. A larger x reduces the bandwidth overhead
but creates a larger latency overhead. Finally, CR requires
a termination condition to avoid infinite transmissions. We
define a probability p, which specifies the likelihood that a
dummy packet is sent after the end of the stream.

Adaptive Padding (AP) [26] mitigates timing side-
channels by masking the statistical timing features on the
client-side. AP sends dummy traffic with indistinguishable
timing from real traffic by switching between creating bursts
and waiting for the next burst. The burst sizes, inter-burst and
intra-burst timings must be from realistic distributions, so
we extract them from our closed world dataset.

Comparing AP with CR: To compare them, we create an
experimental setup to measure them in varying configurations.
We implement a DoT proxy that we place between Unbound
and the DoT server, providing the mitigations on the client



Figure 2: Comparison of time overhead (x-axis) and packet
overhead (y-axis) between AP and CR. A full circle repre-
sents 10% correctly labeled domains (≥ 5/10 traces correct).

side. Technically, we simulate the effects on DNS Sequences,
which allows for quicker testing without regenerating traces.

We measure the mitigation effects with our 10-fold
cross-validation setup for varying packet rates x ms (for CR)
and the probabilities p (for CR and AP). We test four packet
rates from 12 ms to 100 ms and six probabilities p from 0.4
to 0.9. We measure the bandwidth overhead in additional
DNS messages, the increase in resolution time, ignoring
dummy packets, and the impact on the classification results.

Figure 2 shows the classification results. It is color coded
with AP being blue (left-most column of circles) and CR in
the remaining colors. The x-axis shows the time overhead
as a factor compared to the baseline of no modification.
Similarly, the y-axis measures the overhead in the number
of DNS messages with 1 being the baseline. The size of
the colored slice of each circle represents the classification
results. A full circle is equal to a 10 % classification success
in the 5/10 traces correctly classified setup.

All variations are successful in mitigating our classifier.
For a similar defense strength AP has a higher bandwidth
overhead than low-rate CR, however, lower than fast-rate CR.
For interactive use cases AP is likely better, because it has
no timing overhead, yet when bandwidth is of concern, CR
with a slow sending rate is probably preferred over AP.

5 Discussion

Our work helps to understand the privacy threats that DNS
users face and how they can be protected. Analyzing new
side-channel attacks becomes more important, as there is
a general trend for more encryption that aims to mitigate
(obvious) privacy breaches.

This leaves DNS as an important target for snooping on the
privacy of users, since it is the first step of connecting to the
Internet. Given that we constrained ourselves to encrypted
and padded DNS traffic, we find the provided classification
results quite alarming. We can partially deanonymize 92.2 %
of websites and correctly classify 86.1 % of DNS Sequences.
The foremost goal of our study, assessing the privacy guaran-
tees of encrypted DNS, was thus successful, as we have shown
drastic privacy problems. The classification accuracy can be
further boosted by combining our approach with existing WF
methodologies. Having said this, there are some limitations
to our proposed methodology, which we will describe next.

Datasets: We use a rather extensive dataset with 9235
websites / 92350 DNS Sequences in the closed world dataset.
Related WF attack papers regularly use a much smaller
number of websites in their datasets, in the range of tens to
hundreds [11, 23, 28]. A larger dataset causes precision and
recall to decline [23, Fig. 10], which means our results would
shine better on datasets of identical size to these papers.

DNS Traffic Identification and Extraction: The ap-
proach to extract a DNS Sequence from network captures
assumes DNS servers are identifiable as such. DoT helps us
here, by using a dedicated TLS port, and most DoH servers
have dedicated IP addresses.

Similarly, we assumed that we can extract message sizes
from the TLS stream, which is possible for the current
implementations. They try to use small TLS records to
transmit the data, by either using a single TLS record for a
DNS reply. In principle, DNS messages could be transmitted
in many tiny or equally sized TLS records, hampering
attempts of exact message size extraction, but increasing the
cost due to more processing and network overhead.

User Modeling: For our experiments, we modeled a
certain user behavior, which however might deviate in
practice. First, we assumed the client is waiting until the
website has fully loaded without any background DNS traffic.
Second, the evaluations were performed with an empty
browser cache and DNS cache, which only included the
effective TLDs. In practice users may have different states for
their DNS cache and browser cache, which can result in fewer
DNS requests sent. However, all major browsers implement
strategies to partition the browser cache based on first party
domain [3, 9, 32]. This prevents the browser from re-using
common resources across domains and is implemented to
prevent user tracking from websites. We think that simulating
an empty cache is therefore a fair approximation for many
websites, given that our attack can only work on the first
page visit of a stay on a website. While partial caching may
decrease the classifier’s accuracy, one could argue that a
stateful adversary can use our attack to model the DNS cache
state of a user. Knowing that, the adversaries can adapt the
training datasets by retraining on the traces that are expected
with a certain cache state. We plan to perform such analyses
and an according adaptation to our classifier in the future.



6 Related Work

DoT [14] and DoH [12] were created to provide confidential
DNS transactions. The standardized padding policies [21],
required to combat traffic analysis, are based on Gillmor’s
work analyzing individual query/response pairs [10]. We
assess this general threat model to encrypted DNS in a Web
setting, in which we can leverage dependencies between
multiple DNS requests. This argument is agnostic to the
specific proposal and applies to future schemes.

Parallel to our work two papers from Houser et al. [13]
and Siby et al. [27] were published. Their work is closely
related to ours, and we will highlight the relevant differences.

Houser et al. [13] analyze DoT by using a machine
learning (ML) classifier on statistical features of a time series
of DNS messages. Their threat model is identical to ours.
The feature set is built from a time series of DNS messages,
containing the timestamp, length of the encrypted message,
and the traffic direction. From this, they extract higher level
features, such as the query or response length, total number
of packets, time intervals, or queries per seconds. For each
higher level feature, they calculate a range of statistics (min-
imum, maximum, median, mean, deciles, and count) which
they feed into the ML classifier. They use two self-learning
classifiers, random forests and Adaboost. For domain
category inference (i.e., domain is dating or gambling related)
they report 93.65 % to 96.12 % correct classification for
unpadded data. This drops to only up to 78.7 % when using
padded data. Identifying individual websites with padding,
like our paper, achieves only 83 % correct classifications.
These results are for a dataset with only 98 sensitive websites.

Siby et al. [27] analyzed the privacy of DoH, focusing on
unpadded traffic but evaluating the padding impact. The main
feature is a sequence of bytes with the sign indicating the
traffic direction and the value either representing the TLS
record lengths or the combined size of a burst. This sequence
is then converted into bi-grams using a sliding window and
fed into a random forests classifier. Importantly, they do not
use any timing information, however, in Table 3 we found
timing to be very important. The dataset ranges from 700
to 1500 domains for the closed world and 5000 for the open
world. They report a precision of 94.0 % when evaluating
on a closed world dataset comparable to ours. By their own
report DoT is much harder to classify than DoH, having
a 0.3 reduction in the F1 score (see [27, Table VII]). The
strength of the paper lies in the diverse evaluation, testing
with different clients, resolvers, and padding configurations.

Dataset: Compared to both papers we use more domains
for our dataset with 9235 domains in the closed world.
Smaller datasets benefit the classification results, as the
possibility for wrong classifications and the diversity in the
dataset is lower. Even with the larger dataset, we beat Houser
et al.’s performance when classifying individual websites
with 86.1 % compared to their 83 %. The data collection

pipeline is similar in all three papers.
Feature Set: Houser et al. use the most extensive feature

set, by including time, sizes, and directionality, while Siby et
al. use sizes and directionality. We use sizes and timing, but
ignore directionality, as we only use the downstream traffic,
since we found the upstream to contain almost no entropy.

Houser et al.’s use of inspectable self-learning classifiers
allows them to list the most important features. In the case
of individual website classification with padding they are
different timing features, like our results in Section 4.1.
Interestingly, when performing domain category inference
timing plays almost no role, even with padding. Siby et al.
only use low level byte counts and no timing, therefore the
feature importance does not apply for their classifier.

Unique Contributions: Most importantly, we are the
only ones to implement and test countermeasures specific
to encrypted DNS fingerprinting (see Section 4). Both papers
measure the impact of padding on their classification results,
whereas we only evaluat the impact of our classifier on
padded data with the standardized 128 B/468 B block padding.
This padding is also the most aggressive one tested in the
related papers. Siby et al. test two additional configurations,
a perfect padding in which all sizes are indistinguishable
analog to our work in Section 4.1 and the effect of tunneling
DNS over Tor. Houser et al. only discuss the high level ideas
of defense, namely hiding exact size and timing information.

We are the only ones measuring subpage agnostic
classification (see Section 3.2.2) in which we visit webpages
beyond the index page, an inherently more complicated task
due to the variety of pages.

7 Conclusions

Our work underlines the importance of carefully studying
the possibility of traffic analysis against encrypted protocols,
even if message sizes are padded. While there is a plethora
of literature on Website Fingerprinting based on HTTPS and
Tor traffic, we turned to encrypted DNS—an inherently more
complex context, given the low entropy due to short sequences
and small resources. We show that passive adversaries can
inspect sequences instead of just single DNS transactions
to break the widely deployed best practice of DNS message
padding. We hope that our observations will foster more
powerful defenses in the DNS setting that can withstand even
more advanced traffic analysis attacks like ours.

Acknowledgment

We thank our anonymous reviewers whose useful comments
helped us to improve the quality of our paper. This work was
supported by the German Federal Ministry of Education and
Research (BMBF) through funding for the BMBF project
16KIS0656 (CAMRICS).



References

[1] APNIC. Use of DNSSEC validation for world. https:
//stats.labs.apnic.net/dnssec/XA, Last Accessed:
2019-02-05.

[2] Bromite, 2019. https://www.bromite.org/.

[3] Chrome: Partition the HTTP cache, November
2019. https://chromestatus.com/feature/
5730772021411840.

[4] Common crawl CC-MAIN-2019-43, October 2019.
https://commoncrawl.s3.amazonaws.com/cc-
index/collections/CC-MAIN-2019-43/indexes/
cdx-00000.gz.

[5] Fred Damerau. A technique for computer detection and
correction of spelling errors. Communications of the
ACM, 1964.

[6] DNS privacy implementation status, January
2019. https://dnsprivacy.org/wiki/pages/
viewpage.action?pageId=23035950.

[7] DNSSEC deployment report, February 2019.
https://rick.eng.br/dnssecstat/, Last Accessed:
2019-02-05.

[8] Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and
Thomas Shrimpton. Peek-a-boo, I still see you: Why
efficient traffic analysis countermeasures fail. In IEEE
Symposium on Security and Privacy, 2012.

[9] Firefox: Top-level origin partitioning, Octo-
ber 2019. https://bugzilla.mozilla.org/
show_bug.cgi?id=1590107.

[10] Daniel Kahn Gillmor. Empirical DNS padding policy,
March 2017. https://dns.cmrg.net/ndss2017-
dprive-empirical-DNS-traffic-size.pdf.

[11] Jamie Hayes and George Danezis. k-fingerprinting: A
robust scalable website fingerprinting technique. In
25th USENIX Security Symposium, 2016.

[12] Paul E. Hoffman and Patrick McManus. DNS Queries
over HTTPS (DoH). RFC 8484, October 2018.

[13] Rebekah Houser, Zhou Li, Chase Cotton, and Haining
Wang. An investigation on information leakage of DNS
over TLS. In Proceedings of the 15th International
Conference on Emerging Networking Experiments And
Technologies, 2019.

[14] Zi Hu, Liang Zhu, John Heidemann, Allison Mankin,
Duane Wessels, and Paul E. Hoffman. Specification for
DNS over Transport Layer Security (TLS). RFC 7858,
May 2016.

[15] Martin Husák, Milan Cermák, Tomás Jirsík, and Pavel
Celeda. Network-based HTTPS client identification us-
ing SSL/TLS fingerprinting. In 10th International Con-
ference on Availability, Reliability and Security, 2015.

[16] Martin Husák, Milan Cermák, Tomás Jirsík, and Pavel
Celeda. HTTPS traffic analysis and client identification
using passive SSL/TLS fingerprinting. EURASIP
Journal on Information Security, 2016.

[17] Tommy Jensen, Ivan Pashov, and Gabriel Mon-
tenegro. Windows will improve user pri-
vacy with DNS over HTTPS, November 2019.
https://techcommunity.microsoft.com/t5/
Networking-Blog/Windows-will-improve-user-
privacy-with-DNS-over-HTTPS/ba-p/1014229.

[18] Erik Kline and Ben Schwartz. DNS over TLS support
in Android P developer preview, April 2018. https:
//android-developers.googleblog.com/2018/04/
dns-over-tls-support-in-android-p.html.

[19] Vladimir I Levenshtein. Binary codes capable of
correcting deletions, insertions, and reversals. In Soviet
physics doklady, volume 10, pages 707–710, 1966.

[20] Alexander Mayrhofer. The EDNS(0) Padding Option.
RFC 7830, May 2016.

[21] Alexander Mayrhofer. Padding Policies for Extension
Mechanisms for DNS (EDNS(0)). RFC 8467, October
2018.

[22] Patrick McManus. Improving DNS privacy in Firefox,
June 2018. https://blog.nightly.mozilla.org/
2018/06/01/improving-dns-privacy-in-
firefox/.

[23] Andriy Panchenko, Fabian Lanze, Jan Pennekamp,
Thomas Engel, Andreas Zinnen, Martin Henze, and
Klaus Wehrle. Website fingerprinting at internet
scale. In 23rd Annual Network and Distributed System
Security Symposium, 2016.

[24] Victor Le Pochat, Tom van Goethem, Samaneh Tajal-
izadehkhoob, Maciej Korczynski, and Wouter Joosen.
Tranco: A research-oriented top sites ranking hardened
against manipulation. In 26th Annual Network and
Distributed System Security Symposium, 2019.

[25] Roei Schuster, Vitaly Shmatikov, and Eran Tromer.
Beauty and the burst: Remote identification of encrypted
video streams. In 26th USENIX Security Symposium,
2017.

[26] Vitaly Shmatikov and Ming-Hsiu Wang. Timing
analysis in low-latency mix networks: Attacks and
defenses. In 11st European Symposium on Research
in Computer Security, 2006.

https://stats.labs.apnic.net/dnssec/XA
https://stats.labs.apnic.net/dnssec/XA
https://www.bromite.org/
https://chromestatus.com/feature/5730772021411840
https://chromestatus.com/feature/5730772021411840
https://commoncrawl.s3.amazonaws.com/cc-index/collections/CC-MAIN-2019-43/indexes/cdx-00000.gz
https://commoncrawl.s3.amazonaws.com/cc-index/collections/CC-MAIN-2019-43/indexes/cdx-00000.gz
https://commoncrawl.s3.amazonaws.com/cc-index/collections/CC-MAIN-2019-43/indexes/cdx-00000.gz
https://dnsprivacy.org/wiki/pages/viewpage.action?pageId = 23035950
https://dnsprivacy.org/wiki/pages/viewpage.action?pageId = 23035950
https://rick.eng.br/dnssecstat/
https://bugzilla.mozilla.org/show_bug.cgi?id=1590107
https://bugzilla.mozilla.org/show_bug.cgi?id=1590107
https://dns.cmrg.net/ndss2017-dprive-empirical-DNS-traffic-size.pdf
https://dns.cmrg.net/ndss2017-dprive-empirical-DNS-traffic-size.pdf
https://techcommunity.microsoft.com/t5/Networking-Blog/Windows-will-improve-user-privacy-with-DNS-over-HTTPS/ba-p/1014229
https://techcommunity.microsoft.com/t5/Networking-Blog/Windows-will-improve-user-privacy-with-DNS-over-HTTPS/ba-p/1014229
https://techcommunity.microsoft.com/t5/Networking-Blog/Windows-will-improve-user-privacy-with-DNS-over-HTTPS/ba-p/1014229
https://android-developers.googleblog.com/2018/04/dns-over-tls-support-in-android-p.html
https://android-developers.googleblog.com/2018/04/dns-over-tls-support-in-android-p.html
https://android-developers.googleblog.com/2018/04/dns-over-tls-support-in-android-p.html
https://blog.nightly.mozilla.org/2018/06/01/improving-dns-privacy-in-firefox/
https://blog.nightly.mozilla.org/2018/06/01/improving-dns-privacy-in-firefox/
https://blog.nightly.mozilla.org/2018/06/01/improving-dns-privacy-in-firefox/


[27] Sandra Siby, Marc Juarez, Claudia Diaz, Narsea
Vallina-Rodriguez, and Carmela Troncoso. Encrypted
DNS → privacy? A traffic analysis perspective. In
27th Annual Network and Distributed System Security
Symposium. The Internet Society, 2020.

[28] Payap Sirinam, Mohsen Imani, Marc Juárez, and
Matthew Wright. Deep fingerprinting: Undermining
website fingerprinting defenses with deep learning. In
Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, 2018.

[29] The Chromium Developers. DNS over HTTPS (aka
DoH), November 2019. https://www.chromium.org/
developers/dns-over-https.

[30] Tranco list id G63K, August 2019. https:
//tranco-list.eu/list/G63K/10000.

[31] Tao Wang, Xiang Cai, Rishab Nithyanand, Rob Johnson,
and Ian Goldberg. Effective attacks and provable
defenses for website fingerprinting. In Proceedings of
the 23rd USENIX Security Symposium, 2014.

[32] WebKit: Optionally partition cache to prevent us-
ing cache for tracking, November 2019. https:
//bugs.webkit.org/show_bug.cgi?id=110269.

[33] Charles V. Wright, Scott E. Coull, and Fabian Monrose.
Traffic morphing: An efficient defense against statistical
traffic analysis. In Proceedings of the Network and
Distributed System Security Symposium, 2009.

https://www.chromium.org/developers/dns-over-https
https://www.chromium.org/developers/dns-over-https
https://tranco-list.eu/list/G63K/10000
https://tranco-list.eu/list/G63K/10000
https://bugs.webkit.org/show_bug.cgi?id=110269
https://bugs.webkit.org/show_bug.cgi?id=110269

	Introduction and Background
	Traffic Analysis and DNS Padding
	DNS Sequences
	DNS Sequence Classifier

	Evaluation
	Measurement Setup
	Evaluation Results
	Closed World Scenario
	Subpage-Agnostic Domain Classification


	Countermeasures
	Evaluating Perfect Mitigations
	Evaluating Practical Mitigations

	Discussion
	Related Work
	Conclusions

